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An alternative approach to the Van Vleck formalism for calculating the second moment of an EPR line
in the case of strong (super) hyperfine interactions is described. The calculation uses probability theory
to arrive at the following expression for the second moment of the EPR line:
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where €,(j:) and e (k;) are the exact energy levels of the 7th nucleus in the presence of the paramagnetic ion,
when the ion is in its j;th initial and k;th final state, respectively, and 7 is the spin of the nucleus. The
P;(j,k) are the “‘transition” probabilities for the 7th nucleus in the j;th level of the initial spin states to be
found in the &;th level of the final nuclear-spin states after the ion transition. The paramagnetic ion strongly
interacts with NV nuclear spins. The anisotropic EPR-line width variation of dilute Verneuil ruby has been
analyzed, using this formulation, in terms of the (super) hyperfine interaction with the surrounding alumi-
num nuclei. The calculation shows that most of the linewidth (70 to 80%,) is caused by the hyperfine inter-
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action. The line shape is also calculated by a Monte Carlo technique and is found to be Gaussian.

I. INTRODUCTION

HE second moment of an EPR line in the case of
strong spin-spin interaction was originally ob-
tained by Van Vleck.! The results of the calculation
are often employed in the case of the broadening of the
EPR line of a dilute paramagnetic ion by nuclear
(super) hyperfine interactions.?® When so used, care
must be taken that the conditions applicable to the
Van Vleck calculation are satisfied. It is the purpose of
this paper to point out an alternate approach to the
Van Vleck formalism in the nuclear hyperfine case,
which appears to display more explicitly the mechan-
isms operative and to allow the calculation of more
complex cases.
This work will report a calculation of the second
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moment for the case of the broadening of a dilute
paramagnetic-ion EPR line by strong nuclear hyperfine
interaction and the application of this technique to the
EPR linewidth of the Cr** jon in dilute ruby. The
second moment calculated using this technique will be
compared with the second moment obtained by gen-
erating the line shape by a Monte Carlo calculation.

II. SECOND-MOMENT CALCULATION

The case considered is the one in which the para-
magnetic ion may have strong (super) hyperfine inter-
action with surrounding paramagnetic nuclei.

The Hamiltonian of the total spin system (para-
magnetic ion and all paramagnetic nuclei) is

3=gBS-H+D[S —5S(S+1) ]+ 2 [4:S - I+Bi(S-n) (Li- ;) —v/I (1;- H)+Q.1 2], M
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where 4; and B; are appropriate combinations of the
hyperfine and contact-interaction coupling constants,
Q: the quadrupole moment, and vy the nuclear moment
of the ith nucleus. The Hamiltonian given by Eq. (1)
is specialized to the case applicable to the Cr®* ion in
ALQ; (ruby), but additional fine-structure terms may
be added without effecting the subsequent arguments.
The vector fi is a unit vector from the paramagnetic
ion to the 7th nuclear site. The paramagnetic ion is
considered to be very dilute in the lattice, and, con-
sequently, the spin-spin interaction between the ions
is neglected. A treatment of the problem of spin-spin
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interaction has been done by Grant and is given in Refs.
4-7.

The Hamiltonian given by Eq. (1) will be divided
into two parts, those terms involving only operators
that apply to the paramagnetic ion, and all other terms.
The paramagnetic-ion Hamiltonian can be solved by
conventional techniques obtaining a set of eigenfunc-
tions and energy eigenvalues that describe the isolated
ion. The part of the Hamiltonian involving the nuclei
and their interaction with the ion can be solved by
employing two approximations.
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First, it is assumed that the nuclei have a negligible
effect on the expectation values of the ion-spin oper-
ators (S.), (Sy), and (S.). Second, the nuclei do not
strongly interact with one another. Both of these
assumptions are generally valid and will be found to
be valid in the case of ruby. Under these conditions,
the energy levels of Eq. (1) can be obtained by solving
the individual nuclear Hamiltonians, using the ex-
pectation values of the ion-spin operators to replace
the operators. This calculates the average instantaneous
local magnetic field at the site of the nuclei caused by
the paramagnetic ion. The total energy of the system
will then be given by the sum of the paramagnetic-ion
energy and of the several nuclear energies.

An individual nuclear Hamiltonian is, for the 7th
nucleus,

3¢'=A«S) L+ B;((S)-i;) I;-11,)
+v/I1-H)+Qul.2.  (2)

Since strong (super) hyperfine interactions are to be
included, Eq. (2) must in general be solved exactly by
computer methods since the hyperfine term may be of
the same order as the nuclear Zeeman term.

The exact solution of Eq. (2) results in a set of energy
eigenvalues and eigenfunctions for the 7th nucleus.
However, the EPR transition of the paramagnetic ion
takes place between two different spin levels of the ion
that will have two different values of (S). Consequently,
there will be two nuclear Hamiltonians to solve, one
for the initial- and one for the final-spin state. The two
sets of nuclear eigenvalues and eigenfunctions of Eq.
(2) for the initial and final states will be labeled ,, ¥,,
€5, and ¥y, respectively.

The energy levels of Eq. (1) are then, in the approxi-
mations mentioned above,

Fu= g8(S)a-H D(SHu— 2SS+ DI+ T (), ()

=1

where j; indicates that the ith nucleus is in the jth
nuclear-energy level. In the following, it will be under-
stood that a sum or product over 7z is from 7=1 to
1= ;asum over j and & will be from j=1 to j=27/4-1,
k=1 to k=2I+1. A similar energy E; can be obtained
for the final paramagnetic-ion state. The total change
in energy for the entire system in an EPR transition is

By Ey=g8((S)a—(S)s) HA+D((S2)a—(S2))
+X [al)—ald], @

where %; indicates that the 7th nucleus is found in the
kth eigenstate after the ion transition. The terms in-
volving (S) pertain to the EPR transition in the absence
of the hyperfine interaction and will be the same for
any arrangement of the nuclear spins under the assump-
tions employed. Consequently, this constant energy
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difference will be subtracted in all that follows. Thus,

AE=Z [ea(4i) — ev(ks)]. S)

In the usual EPR experiment, only the paramagnetic
ion makes a transition. Assume before the transition
that the ¢th nucleus is in the jth nuclear state. The
probability that this will occur is

Pi(j)=(2I+1)™ (6)

since all levels are equally probable® (in the high-
temperature approximation). After the ion transition,
the wave function of the nuclear state ¥,(7;) has not
changed but must now be expressed in terms of the
new nuclear wave function appropriate after the nuclear
transition ¥;(%;).> The probability that, given the 7th
nucleus was in the j;th state before an ion transition,
it will be found in the k;th state after a transition is
defined as the conditional probability

Pi(j,k)= [(¥a(4) [ Vo (k) |2 ()
Some properties of the P;(j,k) are

The probability that the whole spin system will
change by an energy AF is

PaR)= / dp exp(ip{AE—Y [eali)— es(k)T})
XH Pi(ji) IkI Pl(]yk) ) (9)

where the integral expression for the delta function has
been employed to choose those particular combinations
of j; and k; that give an energy AE. Since j; and k; are
discrete, P(AE) is a discrete distribution. The second
moment of AE is defined as

(AE?)=3_ (AEPP(AE)X. P(AE)T?,  (10)

where the summation in Eq. (10) is over all possible
combinations of initial and final nuclear states of all V
nuclei. Such a summation will be indicated in the
following by a summation sign with no subscript.

The denominator in Eq. (10) can be evaluated by
noting that it is Eq. (9) summed over all possible
combinations of initial and final nuclear states. Each
possible combination of states is counted once, and the
total number of terms in the sum is (2741)?¥, there
being (27+-1)? choices of initial and final states for each
of NV nuclei. Selecting from this sum the terms in which
a prescribed V-1 of the nuclei have fixed initial and
final states, i.e., j1=3, k1=35, jo=4, k=7, etc., the

.8 C. P. Slichter, in Principles of Magnetic Resonance (Harper &
Row Publishers, Inc., New York, 1963), p. 235.

9 C. P. Slichter, in Principles of Magentic Resonance (Harper &
Row Publishers, Inc., New York, 1963), p. 195.
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result is a sum only on the Zoth chosen nucleus. Since
all possible combinations of quantum numbers are
represented in the total sum, the chosen terms involving
the 7oth nucleus are just the sum over the possible
initial and final states of the 7oth nucleus. This sum is
written

partial sum=a 3 [P:(j:) Zk: P;(5,p)], (1)

where a¢ is a constant. Employing Eq. (8), Eq. (11)
becomes

partial sum=a Z P(j:)=aI+1)12I+1)=a. (12)

This can similarly be done for all other possible
combinations of fixed initial and final states of the other
N-1 nuclei. This grouping will then include all the terms
of the sum. When this is done, all probabilities involving
the 7oth nucleus will have been summed, and these will
sum to one. Likewise, the remaining terms can be
grouped to sum over all the states of each other nucleus
in turn. The denominator of Eq. (10) is then

> P(AE)=1, (13)

and the probability distribution is normalized to 1.
Equation (10) becomes
+w
@)= @) [ dp
Xexp(ip{AE—2 [ea(j) — ex(k:)1})
XIL2:G) IL PG (14
I

The integral over p can be performed, resulting in
QB =% (X [ea(j)—es(k) D IT Pi(j0) IkI Pi(j,k).
% M
(15)

The squared expression in Eq. (15) contains all
crossproducts of the 7 nuclei. A typical cross term in
the sum is, for the sth and pth nuclei,

Lea(Gs) — es(ks) JLea(55) — €5 (k)]
XIT P(i) IL PGGiA)-~ (16)
7
Considering all terms in the sum over all possible states

of this type, the probabilities not explicitly involving
the sth and pth nuclei sum to 1, leaving

Z kz Z :/:. Lea(fn) — €o(kp) Lea(ds) — en(ks)]
XPe(j2)Ps(,8)Pp () Pp(5,k) -
The terms P,(js) and P,(j,) are both (2I+1)7%

%))
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The e,(7,) and e;(ks) are the initial- and final-energy
eigenvalues for the sth nucleus. If the quadrupole term
in the nuclear Hamiltonian [Eq. (2)] is chosen to be
traceless, then

P ea(]'a)=2k3 e (k) =0, (18)

i
or, if the quadrupole term is not chosen to be traceless,

= ea(ja)—}% es(ks) =0. (19)

J

Consider all the terms in the sum for which the pth
nucleus has a fixed initial and final state. Equation (17)
is then

BOIH)(E (i) X P.(ik)
=% (k) T PR, (20)

where B is a constant, which by Eq. (8) becomes

BQI+1)X ea(js)—}:_, € (k:)) =0 21)
J
because of Eqgs. (18) or (19).

Thus, the cross term chosen is zero for this term, and
all other terms in the p sum. Since Eq. (17) is general,
all cross-product terms are zero. Thus, only the squares
of the individual terms in Eq. (15) contribute to the
second moment. Equation (15) becomes

(AR =3(E [ealj)— e (k)T
XI1 PG TL PGA)- (22)

Consider all the terms in this sum for the rth nucleus,
in which the initial and final states are ¢ and ¢, respec-
tively. The probabilities involving the other V-1 nuclei
will each sum to one in the sum over all possible states
with ¢ and ¢ fixed for the rth nucleus. This will also
occur for all the other possible initial and final states
for the rth nucleus. The same procedure can be repeated
for every other nucleus, obtaining for the second
moment

(AE)=2 % % Lea(f) —ea(R) 1P:(j)Ps(4,k) ,  (23)

but P;(4;)= (2I+1)7. So, finally,
QE)=QI+1)' XX % Lea(fi) —ex (k) 1P:(5,k) . (24)

The second moment is thus the sum of the squares of
the possible individual transitions weighted by their
respective conditional probabilities and divided by
2I+1.

Equation (24) can be reduced somewhat further by
expanding the squared terms and noting that the
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TaBLE I. The (super) hyperfine coupling constants obtained
from Ref. 13, written in the notation of Eq. (4) for the first-13
aluminum nearest neighbors.

4 B 0
Site number (MHz) (MHz) (MHz)
1 —0.32 3.0 0.265
2,3,4 2.32 2.76 0.14
5,6,7 1.58 1.89 0.145
8,9, 10 1.91 1.42 0.17
11, 12,13 0.85 1.42 0.175

]

summations on the squared terms are just the respective
traces.

<AE2> = (ZI—l-l)_l Z [Tr (3@,‘,,'2) +Tr (3@55'2)
—22 Zk: ea(jo) (k) Pi(4,k) ], (25)

where Tr signifies the trace. This can be reduced no
further, and it is still necessary to know the e,, €, and
P.(j,k) in order to calculate the cross term.

The calculation of the second moment reduces, then,
to the problem of the calculation of the exact energy
levels of the nuclei and the transition probabilities.

For nuclei that have only slight interaction with the
ion, the nuclei will be quantized along the direction of
the magnetic field. However, for paramagnetic ions
with significant fine structure, (S) is rarely along the
direction of the magnetic field, and the Van Vleck
result does not hold without modification. However,
in that case, the ¢, and €, can be readily calculated, and
the P;(j,k)=8; If h is the direction of the magnetic
field, the second moment becomes

(AE?)=3I(I+1) 2 [A:({Sn)a— (Su)v)
+Bi({S)a—(S)s) -futs I,

where 75 is the component of fi along the magnetic-field
direction. This approximation will be useful in the
following sections.

(26)

III. EPR LINEWIDTH IN RUBY

The angular variation of the EPR Cr?* linewidth in
ruby has been reported by several authors.’®? Curtis
et al.® analyzed the angular variation of vapor-phase
rubies at 35 GHz in terms of mosaic imperfections.
Kirkby and Thorp" analyzed vapor-phase, Verneuil,
and Czochralski rubies at 35 GHz in terms of a mosaic
misorientation and strains. Wenzel and Kim,' hereafter
referred to as WK, also analyzed the angular variation
in dilute Verneuil ruby in terms of mosaic misorien-
tation and strains.

1 D. A. Curtis, C. J. Kirkby, and J. S. Thorp, Brit. J. Appl.
Phys. 16, 1681 (1965).

1 C, J. Kirkby and J. S. Thorp, Proc. Phys. Soc. (London) C1,
913 (1968).

2 R. F. Wenzel and Y. W. Kim, Phys. Rev. 140, A1592 (1965).

RICHARD F. WENZEL 1

The analysis by WK demonstrated that mosaic
misorientation and strains could not account for the
angular variation, and a different broadening mechan-
ism was probably operative, at least in the case of very
small samples of dilute Verneuil ruby.

The line shape observed by WK was quite closely
Gaussian for all transitions and angles. The same line-
width and angular variation was found for two small
samples (3-mm cubes) from two different boules and
with chromium concentrations varying by a factor of
10 (0.001 and 0.01%). This suggests that the cause of
the anisotropic linewidth broadening is not a defect
property of the crystal but is inherent to the spin system
itself. Such an inherent mechanism will be examined in
the following and shown to account for the majority
of the observed anisotropic broadening. This mechan-
ism is the hyperfine interaction of the Cr*t ion with the
surrounding aluminum nuclei.

In spin systems in which there are significant (super)
hyperfine interactions between the paramagnetic ion
and surrounding paramagnetic nuclei, sizeable aniso-
tropic broadening of the EPR transition may occur.
The second moment of the EPR line under these con-
ditions is given by Eq. (24).

Equation (24) may be used to calculate the contri-
bution to the second moment from all aluminum
nuclei in the lattice. However, the calculation need only
be carried out over the nuclei that strongly interact
with the Cr** ion. Equation (26), a modified form of
the Van Vleck second-moment expression for unlike
spins, can be employed for more distance nuclei.

In the case of ruby, Cr** in ALOj;, the aluminum
nuclei have spin /=%, and are 1009, abundant. The
spin of the Cr®*t is £, and the spin Hamiltonian is

3e=gBS-H+D[S2—3S(S+1)], (27)

where g is 1.985 and D is —5.75 GHz. The aluminum
nuclear-spin Hamiltonian is given by Eq. (2).

The Cr3t is known to have strong (super) hyperfine
interactions with the surrounding 13 aluminum nuclei.?
The coefficients 4 and B in Eq. (2) are calculated from
the data of Ref. 2 for these 13 nuclei and are given in
Table I. The nuclear magnetic moment of the A+ ion
7 is 3.6385 un.

The eigenvalues and eigenfunctions of Eq. (27) for
the Cr** ion alone can be calculated by computer
techniques. This yields the (S), and (S); for the initial
and final Cr®t levels, respectively, of the ion EPR
transition alone. The expectation values (S) are then
substituted into the Hamiltonian of Eq. (2) for an
individual nuclear spin, and the Hamiltonian is solved
exactly. An exact solution is necessary since the nuclear
Zeeman term is of the same order as the hyperfine term.
This yields the initial set of nuclear states of the jth
nucleus €,(7;) when (S,) is used in Eq. (2) and the
final set e3(k;) when (S;) is employed. The ¥,(5;) and
Wy (k;) of Eq. (24) are the eigenfunctions of Eq. (2),
and, consequently, P;(4,k) can be calculated.
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The contribution to the second moment from each
of the 13 aluminum nuclei is obtained, and the total
second moment is obtained by summing the 13 nuclei.

To compare this second moment, which is expressed
in energy units (MHz?) in terms of experimentally
measured widths, it is also necessary to know dE/dH
for the ion transition at the resonant magnetic field.
This is given by

AE/dH = gB({Sa)— {Szs)) cosh

+88((Sza)—(Szv)) sind,  (28)
where 6 is the angle between the C axis and the mag-
netic field, which can be readily calculated. For
simplicity, it is assumed that the magnetic field is in the
x-z plane. Finally, the square root of the second moment
of a Gaussian line is equal to half the peak-to-peak
(derivative) width of the EPR line.

The calculation outlined above has been done for
several of the resonance lines observed at 9.4 GHz.
Figure 1 shows the calculated peak-to-peak (derivative)
width in gauss (solid circles). The experimental data of
Ref. 12 for the 0.019, Cr*t sample are also shown
(triangles). The notation e, b, and ¢ labels the 1 — 2,
1 — 3LF(low-field), and 3 — 4 transitions, respectively,
in the notation given in Ref. 12.

Also shown on Fig. 1 is the linewidth (squares) pre-
dicted by the Van Vleck formulation when the nuclear
spins, but not the spin of the ion, are assumed to be
quantized along the direction of the magnetic field

[see Eq. (26)].

IV. DISCUSSION

The angular variation predicted by the second-
moment calculation is very similar to the experimentally
observed variation, but is about 20 to 309, smaller in
magnitude than the observed variation.

The linewidth calculated by the Van Vleck method
[Eq. (26)], using the data of Ref. 2, greatly under-
estimates the linewidth. This calculation assumes that
the Cr®** spin is not along the magnetic field, but that
the nuclear spins are so aligned. As can be seen from
the figure, the effect of the ion on the nuclear spins is a
major cause of the broadening.

However, Eq. (26) will result in nearly the correct
linewidth when 6=0° (see Ref. 2, pp. 539) since for
this orientation (S) is aligned along the magnetic field,
and (I) is very nearly so.

This analysis of the linewidth in dilute ruby is based
upon a calculation of the second moment of the EPR
line. Objections to using moment calculations to predict
linewidth have been raised.>~? However, once the ¢,(J;),
es(k:), and the P,(j,k) are known for all relevant
nuclei, it is possible to predict the line shape by a
Monte Carlo calculation.

A Monte Carlo calculation consists of sampling a
sufficient number of possible energy differences AE.
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Frc. 1. Predicted and experimental EPR linewidth. The experi-
mental EPR peak-to-peak width at 9.4 GHz for a 0.019%, Cr
sample of ruby as a function of the angle that the magnetic field
makes with the crystallographic C axis is indicated by the triangles
in the figures. The linewidth calculated by the mechanism of
strong hyperfine interaction with the first-13 Al nuclei is indicated
by the dots in the figures. The linewidth calculated using the
modified Van Vleck formulation given by Eq. (26) is indicated
by the squares. The three graphs, a, b, and ¢ refer to three different
EPR transitions in ruby at 9.4 GHz. (See Ref. 3 for the
nomenclature.)

The discrete distribution of P(AE) can then be ex-
amined to determine the shape of the line.

The generation of a single AE is accomplished by
assigning initial states j; to all of the 13 nuclei. Since
each initial state is equally probable (high-temperature
approximation), a number is generated randomly
between 1 and 6 (there are six possible initial states)
in order to choose j;. The initial states are thus chosen
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FiG. 2. EPR line shape from the Monte Carlo calculation. The line shape calculated by the Monte Carlo (statistical) method is given
by the circles on figure for the (a) 6=35° 1 — 3 LF transition and (b) §=25° 1— 3 LF transition. The solid line is a superimposed
Gaussian line shape. The full width at half-maximum (G) is also indicated on the figure.

with the proper frequency. If it were desirable to include factor. Once the initial state is chosen, the choice of
temperature effects, the frequency of the choice of the final state can be accomplished by generating a
states could be weighted by the appropriate Boltzman random number x, between 0 and 1, and comparing it
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with the Py(j,k). If

ko ) F=ko41 )
k=0 k=0

with P;(7,0)=0, then k;=ko+1. Thus, the final state
can be chosen with the proper probability. This is
done independently for all of the 13 nuclei and the
AE calculated for this particular configuration. By
repeating this calculation a sufficient number of times,
the distribution of AE, i.e., the line shape, can be
obtained.

This distribution has been calculated for each angle
and transition, using a sample of 1)X10* calculations of
AE. Increasing the sample size by a factor of 3 has no
effect on the line shape. The shape of the curve was
obtained by plotting the number of samples of AE that
fell in an interval range E-+8FE as a function of E,
where 6E was 1 G.

Figure 2 shows the results for (a) 6=5° and (b)
6=25° for the 1 — 3 LF transition. The energy differ-
ence AE has been expressed in gauss, using Eq. (28).
Also shown in the figures are superimposed Gaussian
line shapes. The shape of the lines is clearly very close
to Gaussian. The second moment, calculated by using
Eq. (24), is identical with the second moment calculated
from the full width at half-maximum for all of the lines
and angles.

Thus, it appears that, at least for ruby and in the
approximations employed for the calculation, the line
shape is Gaussian, and the expression for the second
moment given by Eq. (24) refers to a Gaussian line
shape.

The over-all agreement between the width calculated
from the hyperfine coefficients and the experimentally
observed width reveals that the major source of the
anisotropic broadening is the strong hyperfine inter-
action with the surrounding Al nuclei. The remaining
linewidth not accounted for by the calculation (20—
30%) may be due to several possible defect mechanisms.
However, one significant fact that eliminates a number
of these mechanisms is that the experimental line shape
is found to be Gaussian for all angles and transitions.
With this in mind, possible broadening sources are
discussed in Secs. IV A, IV B, and IV C.

A. Mosaic Misorientation

In this defect mechanism, the crystal is viewed as a
collection of microcrystals that are canted with respect
to one another. Consequently, the z axis of the crystals
will make a distribution of angles with the magnetic
field. If the isofrequency plot is anisotropic, i.e.,
dH /d8£0, the EPR line will be broadened by this
distribution.

However, for the 1 = 2 and 1 — 3 LF transitions at
6=0°, and for the 1 — 2 and 3 — 4 transition at §=90°,
dH /d6=0. Figure 1 shows a linewidth for these angles
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and transitions that is significantly larger than the
hyperfine broadening. Thus, mosaic misorientation
alone cannot account for all the additional broadening.

B. Strain and Electric-Field Broadening

Strains and electric fields are known to broaden the
Cr3* EPR line.’®® However, electric fields due to
randomly-distributed trapped charges do not produce
a Gaussian line shape.’® If the linewidth were increased
to account for the additional width by convoluting the
Gaussian line shape with the appropriate line shape
for electric field broadening (a Holtzmark distribution),
the shape of the line would change significantly away
from Gaussian. This is not observed. Strain fields pro-
duced by randomly-distributed point defects (which
produce a Lorentzian line shape) would also change
the shape of the Cr** EPR lines, and the same argu-
ment applies as in the case of electric field broadening.
Thus, neither strain nor electric field effects can account
for the additional broadening. Strains caused by dis-
locations produce a Gaussian line shape!® and conse-
quently could be responsible. However, the dislocation
density in Czochralski and Verneuil ruby differ typically
by several orders of magnitude. Both types of ruby have
virtually the same observed linewidth for good samples
with low Cr®* concentration. Thus, dislocations are not
responsible.

C. Broadening Due to Remote Nuclei

Aluminum nuclei more remote from the Cr*+ ion
than the 13 considered will also contribute to the second
moment. Their line shape will be Gaussian. When the
(super) hyperfine interaction is much less than the
nuclear Zeeman term, the expression for the second
moment given in Eq. (26) is appropriate.

The second-moment calculation has been done for
the 512 nearest neighbors, excluding the first 13, for
which the sum is reported in Fig. 1. The maximum
additional calculated width was 2.9 G. Since both lines
will be Gaussian in shape, the widths add in rms
fashion. This additional linewidth is consequently
negligible for all angles. Thus, remote Al nuclei are not
responsible for the broadening.

D. Calculational Approximations

Two approximations were employed in the calcu-
lation of the second moment. In the first, it was assumed
that the energy levels of the Cr-Al system could be
obtained as the sum of the Cr®* energy and the energy
of the nuclear level. The appropriateness of this approxi-

13 P, L. Donoho, Phys. Rev. 133, A1080 (1964).

4 E. B. Royce and N. Bloembergen, Phys. Rev. 131, 1912
(1963).

15 R. F. Wenzel and Y. W. Kim, Phys. Rev. 156, 356 (1967).

16 A, M. Stoneham, Rev. Mod. Phys. 41, 82 (1969).
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mation was investigated by solving exactly the complete
(6X4) chromium-aluminum energy-level problem and
comparing this exact solution with the additive approxi-
mation. The energy differences for the transitions in
question were the same to within about 19, which is a
negligible difference.

The second approximation is that the nuclear spins
are uncoupled from one another. The error in assuming
this would be of the order of the ratio of the nuclear
magnetic moment to the Cr** magnetic moment or
about un/pe.= (1837)71. Thus, the calculation of the
linewidth should be reasonably accurate.

The broadening mechanisms discussed above thus
inadequately explain the difference between the ob-
served and calculated linewidth variation. In particular,
strain and electric field effects, which are often men-
tioned in connection with broadening of the §=0°
EPR lines, do not appear to be present in good dilute
Verneuil ruby.

In any case, clearly the major part of the broadening
is caused by the aluminum hyperfine interaction.

V. CONCLUSIONS

The second moment of an EPR line broadened by
nuclear hyperfine interaction can be obtained using

PHYSICAL REVIEW B

VOLUME

RICHARD F. WENZEL 1

Eq. (24) if the energy eigenvalues and eigenfunctions
of the nuclei in the presence of the paramagnetic ion
are known. The paramagnetic ion need not have a
simple spin-level structure.

Applying this calculation to the Cr®* ion in dilute
ruby, the major part (70-809%) of the anisotropic
linewidth broadening is found to be caused by strong
(super) hyperfine interactions with 13 surrounding
aluminum nuclei. The EPR line shape of the Cr*t ion,
strongly interacting with the aluminum nuclei, is
calculated by a Monte Carlo method and is found to
be Gaussian, in agreement with experimental results.
Consequently, the calculation of the second moment is
adequate to describe the line. Strains, electric field
effects, dislocations, broadening by remote nuclei, and
calculational approximations do not appear to account
for the additional 20-309, broadening unexplained by
the hyperfine mechanism.
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Magnetic Structure of Magnesium Chromite*
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The magnetic structure of the normal cubic spinel MgCryO4 (ao=8.335 &) was investigated by means of
neutron diffraction. Two distinct transitions to magnetically ordered states were found at ~16 and ~13.5°K.
The reflections associated with the 16°K transition are explained by a class of noncollinear antiferromagnetic
structures with a magnetic unit cell identical with the chemical cubic unit cell. The most symmetric of these
high-temperature (H) structures belongs to the space group P42'm’. The H-structure reflections appeared
with different intensities relative to the nuclear reflections in three samples and did not appear at all in two
other samples. The low-temperature (L) reflections associated with the 13.5°K transition are explained by
either of two nonequivalent noncollinear antiferromagnetic L structures which belong to space groups
P32'2'2; and P2222 with a magnetic unit cell (2a0,2a0,a0). The intensities of the L reflections relative to the
intensities of the nuclear reflections varied somewhat among the five samples. It is suggested that the # and
L structures represent two different phases which coexist below 13.5°K. The intensities of the magnetic
reflections (H+-L) are accounted for by a magnetic moment of about 2.2up per Cr*.

I. INTRODUCTION

HE compound MgCr,O; has a normal spinel
structure in which the Cr’* and Mg?* ions are
situated at the B and A sites, respectively. Normal
spinels with magnetic ions on the B sites and diamag-

* Research performed under the auspices of the U. S. Atomic
Energy Commission.

T On leave from Nuclear Research Center, Negev, Beer Sheva,
P. O. Box 9001, Israel.

netic ions on the 4 sites make up a class of compounds
which are of interest in the study of the B-B inter-
actions. Assuming only first-neighbor interactions in an
Ising model, Anderson! found a very large degeneracy
associated with the lowest energy in this class of com-
pounds. He also showed that this model will, in general,
lead to short-range order, whereas long-range order will
have to come from interactions with more distant

1P. W. Anderson, Phys. Rev. 102, 1008 (1956).



